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1. INTRODUCTION

Let E/C be a continuum with connected complement 0 :=C� "E with
respect to the extended complex plane C� :=C _ [�]. In 1897 D. Hilbert
proved that if L :=�E is an analytic Jordan curve, then it can be approxi-
mated arbitrarily closely by lemniscates which lie in 0 and consist of one
component only (for details, see [21]). Recently, Dolzhenko (cf. [9, p. 21])
raised the problem of estimating the rate of approximation of a closed Jordan
curve by lemniscates in the Hausdorff metric in terms of properties of this
curve.

In this paper we study the closeness of lemniscates to �E in terms of the
behavior of level lines of the Riemann mapping 8 of 0 onto the exterior
of the unit disk. Comparing our results with distortion theorems known in
geometric function theory and the theory of quasiconformal mappings (see,
for example, [18, 5, 14, 7, 16, 17, 4]) one can obtain further statements
concerning Dolzhenko's problem. However, this purely geometrical (not
approximational!) topic exceeds the scope of this paper.
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2. MAIN DEFINITIONS AND RESULTS

Let the function 8 map 0 conformally and univalently onto 2 :=
[w: |w|>1], where 8 is normalized by the conditions 8(�)=� and
8$(�)>0. Set 9 :=8&1 and let Ls denote the Jordan curve

Ls :=[z: |8(z)|=1+s] (s>0).

Let pn , n # N :=[1, 2, ...], be a polynomial of degree at most n. Denote by
J( pn , c), c>0, the lemniscate

J( pn , c) :=[z: | pn(z)|=c].

For a Jordan curve 1/C denote by int 1 and ext 1 the bounded and
unbounded components of C� "1. By sn(E) we denote the infimum of s>0
for which there exists a polynomial pn= pn, s such that J( pn , 1) is a Jordan
curve satisfying the conditions

E/int J( pn , 1)/int Ls . (2.1)

By the Hilbert theorem (see [21, pp. 68�71]) applied to Ls

lim
n � �

sn(E)=0.

The rate of the decrease of sn(E) as n � � is the main topic of this paper.

Theorem 1. Let E/C be an arbitrary continuum with connected com-
plement. Then the inequality

sn(E)�c1

log n
n

(n>1) (2.2)

holds with some c1>0 independent of n.

If we know more about the geometry of E, then the estimate (2.2) can
be sharpened.

Let 1 be a rectifiable Jordan curve z=z(s) with arc length s # [0, |1 |],
where |1 | denotes the length of 1. If arg z$(s) can be defined on [0, |1 |]
to become a function of bounded variation, then 1 is said to be of bounded
rotation (see [18, p. 63]).

For z=z(s) # 1, we consider the function

h(`) :=arg(`&z) (` # 1 ),
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where ` starts at z(s+) and stops at z(s&). If there is a fixed constant
c2>0 such that the total variation Var` h(`) of h(`) as a function of `
satisfies

Var` arg(`&z)�c2 (z # 1 ),

then 1 is said to be of bounded secant variation (see [2, 13]). Curves of
bounded rotation and curves consisting of a finite number of Dini-smooth
arcs are typical particular cases of curves of bounded secant variation (for
details, see [2, 13, 11]).

Theorem 2. Let �E be a Jordan curve of bounded secant variation. Then
the inequality

sn(E)�
c3

n
(n # N) (2.3)

holds with some c3>0 independent of n.

Proofs of Theorems 1 and Theorem 2, given in Section 4, are based essen-
tially on the estimation of the maximum, taken over 0, of the difference
between the n th degree of the Riemann mapping function 8(z) and the n th
Faber polynomial.

Note that in Theorems 1 and Theorem 2 n is given and one looks for pn

and s such that (2.1) is true. The statement: Given s>0, one looks for n
such that there exists pn for which (2.1) is true, would be similar. Obviously,
the minimal n with this property, denoted by n(s), satisfies

n(s)�
c4

s
log

1
s \0<s�

1
2+

for Theorem 1 and

n(s)�
c5

s \0<s�
1
2+

for Theorem 2, where cj , j=4, 5, are independent of n.
Next we are going to discuss the sharpness of (2.3). Analysis of the proof

of Theorem 2 shows that for some E (for example for a disk or, more
generally, for a domain bounded by an analytic curve) the quantity sn(E)
is much smaller than O(1�n). However, if L has at least at one point some-
thing like an angle <? with respect to E, then the rate of decrease of sn(E)
found in Theorem 2 cannot be improved. Below we explain this effect more
precisely.
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We restrict our consideration to the case when L is a quasiconformal
Jordan curve [1, 15]. Ahlfors (cf. [15, p. 104]) has established a geometrical
criterion for quasiconformality of a curve which can be formulated as follows:
A Jordan curve 1 is quasiconformal if and only if for any pair of points z1

and z2 # 1 the inequality

min[diam 1 $, diam 1"]�c |z1&z2 |

holds with some constant c=c(L)�1, where 1 $ and 1" are the two arcs
which 1"[z1 , z2] consists of.

Using Ahlfors' criterion one can easily verify that curves of bounded rotation
without cusps and piecewise smooth curves without cusps are quasiconformal.

Suppose L is quasiconformal and let z # L, r>0; we denote by #z(r)/0
an arc of the circle [`: |`&z|=r] that separates z from � in 0 (i.e., #z(r)
has nonempty intersection with every Jordan arc in 0 that joins z to �).
If #z(r) is not uniquely determined, we agree to choose it so that, in the
division of 0 into two subdomains by #z(r), the unbounded domain is as
large as possible for given z and r.

If 0<r<R<(diam L)�2, then #z(r) and #z(R) are opposite sides of a
quadrilateral Qz(r, R)/0 whose other two sides are the parts of L which
connect the ends of #z(r) and #z(R). We denote by mz(r, R) the module of
this quadrilateral, i.e., the module of the family of arcs that separate the
sides #z(r) and #z(R) in Qz(r, R) (see [1, 15]).

Theorem 3. Let L=�E be a quasiconformal curve and suppose there
exists a point ` # L such that

lim
r � 0+
t � 0+ \1

?
log

1
t
&m`(tr, r)+=�. (2.4)

Then the inequality

sn(E)�
c6

n
(n # N) (2.5)

holds with some constant c6>0 independent of n.

As an example for (2.4) assume that there exists a circular sector with
center at `, radius $>0 and opening ;?, 1<;<2 in 0� . Then by the
comparison principle for a module we have for 0<r<R<$,

m` (r, R)�
1

;?
log

R
r

,

and therefore (2.4) is fulfilled.
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It is worth pointing out that under the hypotheses of Theorem 3, if,
moreover, L is of bounded rotation, then by [12, inequalities (1) and (3)]

|
r

tr

dx
|#` (x)|

�m` (tr, r)�|
r

tr

dx
|#` (x)|

+c7 ,

where c7=c7(L)>0. Hence, (2.4) is in this case equivalent to the condition

lim
r � 0+
t � 0+ \1

?
log

1
t
&|

r

tr

dx
|#`(x)|+=�, (2.6)

which is easier to verify.
Note that if L is smooth, then (2.6) is not fulfilled in general. So, the

problem of improving (2.3) in this case remains open.
In what follows we denote by c, c1 , ... positive constants (different each

time, in general) that either are absolute or depend on parameters not
essential for the arguments; sometimes such a dependence will be indicated.

For positive a and b we use the expression aPb (order inequality) if
a�cb. The expression a �� b means that aPb and bPa simultaneously.

Set for z # C and A/C,

d(z, A) :=dist(z, A) := inf
` # A

|z&`|.

3. AUXILIARY RESULTS FROM GEOMETRIC FUNCTION THEORY
AND THE THEORY OF QUASICONFORMAL MAPPINGS

Let E/C be an arbitrary continuum (with connected complement). We
begin with a general distortion property of the mapping 8, which follows
easily from the Koebe one-quarter-theorem. Namely, for z # 0"[�] we
have

1
4

|8(z)|&1
d(z, L)

�|8$(z)|�4
|8(z)|&1

d(z, L)
(3.1)

(see, for example, [5, p. 58]). Therefore, if z, ` # 0"[�], w :=8(z), t :=8(`)
satisfy |w&t|�( |w|&1)�2, then

|`&z|�
1
16

d(z, L)
|w|&1

|w&t| (3.2)

(cf. [6, Lemma 1]).
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We will need the following direct consequence of (3.2): If |w|&1�2s,
then

d(z, Ls)� 1
32 d(z, L). (3.3)

Next we recall in a form convenient for us a result which is due to
Tamrazov [20] (see also [5, p. 186]).

Lemma 1. Let the function f be analytic in a domain G/C and continuous
on G� /C. If for some M>0, z0 # �G, m # N and \>0 the inequality

| f (z)|�M \1+ } z&z0

\ }
m

+ (z # �G) (3.4)

holds, then

| f (z)|�c M (z # G, |z&z0 |�\),

where c=c(m).

In the rest of this section we assume that E=G� is bounded by a quasi-
conformal curve L :=�G. In this case the conformal mapping 8 can be
extended to a quasiconformal mapping 8: C� � C� (see [1, Chap. 3]).
Therefore the following result can be derived from the distortion properties
of quasiconformal homeomorphisms of the plane (for details, see [3,
Lemma 1] or [5, pp. 97�98]).

Lemma 2. Let `j # 0� "[�], wj :=8(`j), j=1, 2, 3. Then:

(i) the conditions |`1&`2 |�c1 |`1&`3 | and |w1&w2 |�c2 |w1&w3 |
are equivalent; besides, the constants c1 and c2 are mutually dependent and
depend on L;

(ii) if |`1&`2 |�c1 |`1&`3 |, then

c3 }w1&w3

w1&w2 }
:

� } `1&`3

`1&`2 }�c4 }w1&w3

w1&w2 }
1�:

, (3.5)

where 0<:=:(L)�1, cj=cj (c1 , L)>0, j=3, 4.

For z # 0"[�] set zL :=9(8(z)�|8(z)| ) and denote by z* # L one of the
points with the property

|z&z*|=d(z, L).
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Application of the first part of Lemma 2 to the triplet of points z, z*, and
zL implies

d(z, L) �� |z&zL |. (3.6)

Further, we claim that there exist constants c5=c5(L) and m=m(L) # N
such that for any z, ` # Ls , 0<s<1,

1
d(`, L)

�
c5

d(z, L) \1+
`&z

d(z, L) }
m

+ . (3.7)

Indeed, if |8(`)&8(z)|�s, then by the first part of Lemma 2 and (3.6) we
have

d(`, L) �� |`L&`| �� |`L&z| �� |zL&z| �� d(z, L),

which implies (3.7) with an arbitrary m.
Let |8(`)&8(z)|>s. By virtue of (3.5) we obtain

} `&z
`&`L }P } 8(`)&8(z)

8(`)&8(`L) }
1�:

= } 8(z)&8(`)
8(z)&8(zL) }

1�:

P } z&`
z&zL }

1�: 2

.

Therefore, in this case (3.7) follows from (3.6) with any m�1�:2&1.
Next, we cite a result that is essentially due to Belyi and Mikljukov [8].

Lemma 3. Let z0 # L, z1 , z2 # 0, 0<|z1&z0 |<|z2&z0 |<(diam L)�2.
Then with the notation of Section 2

exp[?mz0
( |z0&z1 |, |z0&z2 | )]�c1 }8(z2)&8(z0)

8(z1)&8(z0) } , (3.8)

where c1=c1(L).

Proof. Let wj :=8(zj), j=0, 1, 2; r :=|z0&z1 |, R :=|z0&z2 |. Denote
by 1=1(z0 , z1 , z2 , 0) the family of all crosscuts of 0 (i.e., Jordan arcs in
0 with ends on L), which separate z0 and z1 from z2 and � in 0. Since
the module of a family of curves is a conformal invariant (cf. [1, 15])
Lemma 2 from [7] (see also [5, Lemma 2.2, p. 36]) and Lemma 2 imply

1
?

log }w0&w2

w0&w1 }&c2�m(1 ).
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Further, an immediate consequence of the first part of Lemma 2 is the
inequality

m(1 )�mz0
(r, R)+c3 .

Comparing the last two inequalities we get (3.8). K

4. FABER POLYNOMIALS. PROOFS OF THEOREMS 1 AND 2

First we review some of the standard facts about Faber polynomials; see,
for example, [19, 10]. The Faber polynomials Fn(z) are defined by a
generating function

w 9$(w)
9(w)&z

=1+ :
�

n=1

Fn(z)
wn ( |w|>1, z # E).

For an arbitrary continuum E with connected complement and n>1,

&Fn&E :=max
z # E

|Fn(z)| P (n log n)1�2 (4.1)

(cf. [19, p. 136]). At the same time there exists a quasiconformal curve
L=�E such that for some :>0 and a subsequence 4/N,

&Fn&E�n: (n # 4) (4.2)

(see [11]).
Further, if L=�E is of bounded secant variation, then

&Fn&E P1 (n # N) (4.3)

(see [2, 13]).
Recall that Fn(z) is the polynomial part of 8(z)n. In the reasoning below

the function

|n(z) :=8(z)n&Fn(z) (z # 0),

which is analytic in 0 and satisfies |n(�)=0, plays a key role.

Proof of Theorem 1. By the maximum principle and (4.1),

||n(z)| P (n log n)1�2 (z # 0).
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Therefore, there exists c>0 such that for z # 0 satisfying |8(z)|�
1+(c log n)�n we have

1
2 |8(z)|n�|Fn(z)|�2 |8(z)|n. (4.4)

Consider the lemniscate

Jn :=J \Fn , 2 \1+c
log n

n +
n

+ .

According to (4.4) all zeros of Fn belong to int L(c log n)�n and

L(c log n)�n /int Jn . (4.5)

Therefore, the level set Jn of Fn consists of a finite number of disjoint
analytic curves. Since by the minimum principle, each component of Jn

must contain a zero of Fn , it follows that Jn is a single Jordan curve.
At the same time for z # 0 satisfying |8(z)|�1+(2c log n)�n and n>n0

large enough we obtain according to (4.4),

|Fn(z)|

\1+c
log n

n +
n�

1
2 \1+

c
log n

n

1+c
log n

n +
n

>2.

Therefore, for n>n0 ,

Jn /int L(2c log n)�n . (4.6)

Comparing (4.5) and (4.6) we get (2.2). K

In the proof of Theorem 1 we approximate �E by lemniscates given by
Faber polynomials. The following example shows that the rate of such an
approximation as found in (4.6) is best possible even in the class of all
domains bounded by a quasiconformal curve.

Example. Let L be the quasiconformal curve constructed by Gaier
[11], which is satisfying (4.2). Suppose that s=sn>0 and cn>0 are such
that

L/int Jn /int Ls ,

where

Jn :=J(Fn , cn).
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According to (4.2) and using the maximum principle, cn�n: for n # 4.
Note that the function Fn(z)�8(z)n is analytic in 0 and is equal to 1 at the
interior point �. Therefore, by the minimum principle applied on the
exterior of Jn , there exists zn # Jn such that

|8(zn)|n�|Fn(zn)|=cn�n: ;

that is,

|8(zn)|�exp \:
log n

n +�1+:
log n

n
.

This means that

s�:
log n

n
,

which shows the sharpness of the factor (log n)�n in (4.6).

Proof of Theorem 2. By (4.3) and the maximum principle,

||n(z)| P1 (z # 0).

The rest of the proof runs as before, i.e., by modifying the reasoning from
the proof of Theorem 1 in an obvious way (taking 1�n instead of
(log n)�n). K

5. PROOF OF THEOREM 3

Suppose s satisfies (2.1). There is no loss of generality in assuming that
s<1�(2n) and that the degree of pn is equal to n, where pn is a polynomial
as in (2.1). Let ,n(z) be a holomorphic branch of pn(z)1�n which gives a
conformal map of ext J( pn , 1) onto 2. Set �n :=,&1

n .
Applying the Schwarz lemma to the functions

1

8 \�n \1
t++

( |t|<1)

and

1

,n \9 \1+s
z ++

( |z|<1),
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we obtain for |u|>1+s, after we invert the map w=8(�n(1�t)), that

|u|
1+s

�|,n(9(u))|�|u|. (5.1)

Consider an arbitrary point u=u(n) with |u|=1+2�n and set z :=9(u).
We will omit the ``n'' in our notations when no confusion may arise. By
(3.1), (3.3), and (5.1),

1
n

| pn(z)| 1�n&1 | p$n(z)|=|,$n(z)|�
8

n d(z, Ls)
P

1
n d(z, L)

.

Thus for any ` # L2�n , by the second part of (5.1) for 9(u)=` instead of z
and by (3.7), the inequality

| p$n(`)| P
1

d(`, L)
P

1
d(z, L) \1+ } `&z

d(z, L) }
m

+ (5.2)

holds with some m=m(L) # N.
Let v be such that

u
v

>0, |v|=1+2s. (5.3)

According to Lemma 2, (3.6), and (5.3) for ! :=9(v) and zL :=9(u�|u| ) we
have

|!&z| P |zL&z| Pd(z, L).

Therefore, Lemma 1 and (5.2) yield that

| p$n(!)| P
1

d(z, L)
,

which by virtue of (3.1), (5.1), and (5.3) implies that

s
4(1+s) d(!, L)

=
1
4 \

2s
1+s

&1+ 1
d(!, L)

�|,$n(!)|

=
1
n

| p$n(!)| | pn(!)|1�n&1�
1
n

| p$n(!)| P
1

n d(z, L)
.

Further, taking into account (3.6), we have

} z&zL

!&zL }P
1

s n
. (5.4)
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Next, we choose z such that zL=`, where ` is the point from (2.4). We can
assume that |!&`|<|z&`| because otherwise by Lemma 2, sp1�n which
corresponds to (2.5). The inequality (5.4) and Lemma 3 imply that

} z&`
!&` }P }8(z)&8(`)

8(!)&8(`) }Pexp(? m` ( |!&`| , |z&`| )). (5.5)

Now let us assume contrary to (2.5) that

lim inf
n � �

n sn(E)=0; (5.6)

i.e., there exists a sequence 4/N such that

n sn(E) � 0 as 4 % n � �.

By the second part of Lemma 2 for z=z(n, `), !=!(s, `), s :=2sn(E)
constructed above,

tn := } !&`
z&` }� 0 as 4 % n � �,

rn :=|z&`| � 0 as 4 % n � �,

and by (5.5),

1
?

log
1
tn

&m` (tn rn , rn)�c,

which contradicts our assumption (2.4). Hence, (5.6) is false and we obtain (2.5).
K

ACKNOWLEDGMENT

This paper was completed while the author was visiting the Katholische Universita� t
Eichsta� tt. The author thanks the members of the university for the pleasant mathematical
atmosphere they offered him.

REFERENCES

1. L. V. Ahlfors, ``Lectures on Quasiconformal Mappings,'' Van Nostrand, Princeton, NJ,
1966.

2. J.-E. Andersson, ``On the Degree of Polynomial and Rational Approximation of Holomorphic
Functions,'' Dissertation, Go� teborg, 1975.

303APPROXIMATION BY LEMNISCATES



3. V. V. Andrievskii, Direct theorems of approximation theory on quasiconformal arcs,
Math. USSR Izv. 16 (1981), 221�238.

4. V. V. Andrievskii, Approximation of harmonic functions in compact sets in C, Ukr. Math.
J. 45 (1993), 1649�1658.

5. V. V. Andrievskii, V. I. Belyi, and V. K. Dzjadyk, ``Conformal Invariants in Constructive
Theory of Functions of Complex Variable,'' World Federation, Atlanta, GA, 1995.

6. V. V. Andrievskii and H.-P. Blatt, A discrepancy theorem on quasiconformal curves,
Constr. Approx. 13 (1997), 363�379.

7. V. I. Belyi, Conformal mappings and the approximation of analytic functions in domains
with a quasiconformal boundary, Math. USSR Sb. 31 (1977), 289�317.

8. V. I. Belyi and V. M. Mikljukov, Some properties of conformal and quasiconformal
mappings and direct theorems of constructive function theory, Math. USSR Izv. 8 (1974),
1323�1341.

9. P. A. Borodin, On polynomials most divergent from zero on a domain boundary, Moscow
Univ. Math. Bull. 52 (1997), 18�21.

10. D. Gaier, ``Vorlesungen u� ber Approximation im Komplexen,'' Birkha� user, Basel, 1980.
11. D. Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 (1999),

265�277.
12. J. A. Jenkins and K. Oikawa, On results of Ahlfors and Hayman, Illinois J. Math. 15

(1971), 664�671.
13. J. Korevaar, Polynomial and rational approximation in the complex domain, in ``Aspects

of Contemporary Complex Analysis'' (D. A. Brannan and J. G. Clunie, Eds.), pp. 251�292,
Academic Press, New York, 1980.

14. M. A. Lavrentiev, Sur la continuite� des fonctions univalentes, C.R. Acad. Sci. USSR 4
(1936), 215�217.

15. O. Lehto and K. I. Virtanen, ``Quasiconformal Mappings in the Plane,'' 2nd ed., Springer-
Verlag, New York, 1973.

16. F. D. Lesley, On interior and exterior conformal mappings of the disk, J. London Math.
Soc. 20 (1979), 67�78.

17. F. D. Lesley, Conformal mappings of domains satisfying a wedge condition, Proc. Amer.
Math. Soc. 93 (1985), 483�488.

18. Ch. Pommerenke, ``Boundary Behaviour of Conformal Maps,'' Springer-Verlag, New York,
1992.

19. V. I. Smirnov and N. A. Lebedev, ``Functions of a Complex Variable: Constructive Theory,''
MIT Press, Cambridge, MA, 1968.

20. P. M. Tamrazov, ``Smoothness and Polynomial Approximation,'' Naukova Dumka, Kiev,
1975. [In Russian]

21. J. L. Walsh, ``Interpolation and Approximation by Rational Functions in the Complex
Plane,'' 5th ed., Amer. Math. Society, Providence, RI, 1969.

304 VLADIMIR ANDRIEVSKII


	1. INTRODUCTION 
	2. MAIN DEFINITIONS AND RESULTS 
	3. AUXILIARY RESULTS FROM GEOMETRIC FUNCTION THEORY AND THE THEORY OF QUASICONFORMAL MAPPINGS 
	4. FABER POLYNOMIALS. PROOFS OF THEOREMS 1 AND 2 
	5. PROOF OF THEOREM 3 
	ACKNOWLEDGMENT 
	REFERENCES 

